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Abstract—We consider the setting in which an electric power
utility seeks to curtail its peak electricity demand by offering
a fixed group of customers a uniform price for reductions in
consumption relative to their predetermined baselines. The un-
derlying demand curve, which describes the aggregate reduction
in consumption in response to the offered price, is assumed to be
affine and subject to unobservable random shocks. Assuming that
both the parameters of the demand curve and the distribution
of the random shocks are initially unknown to the utility, we
investigate the extent to which the utility might dynamically
adjust its offered prices to maximize its cumulative risk-sensitive
payoff over a finite number of T days. In order to do so
effectively, the utility must design its pricing policy to balance the
tradeoff between the need to learn the unknown demand model
(exploration) and maximize its payoff (exploitation) over time.
In this paper, we propose such a pricing policy, which is shown
to exhibit an expected payoff loss over T days that is at most
O(

√
T ), relative to an oracle who knows the underlying demand

model. Moreover, the proposed pricing policy is shown to yield
a sequence of prices that converge to the oracle optimal prices
in the mean square sense.

I. INTRODUCTION

The ability to implement residential demand response (DR)
programs at scale has the potential to substantially improve
the efficiency and reliability of electric power systems. In the
following paper, we consider a class of DR programs in which
an electric power utility seeks to elicit a reduction in the
aggregate electricity demand of a fixed group of customers,
during peak demand periods. The class of DR programs we
consider rely on non-discriminatory, price-based incentives for
demand reduction. That is to say, each participating customer
is remunerated for her reduction in electricity demand accord-
ing to a uniform price determined by the utility.

There are several challenges a utility faces in implementing
such programs, the most basic of which is the prediction of
how customers will adjust their aggregate demand in response
to different prices – the so-called aggregate demand curve. The
extent to which customers are willing to forego consumption,
in exchange for monetary compensation, is contingent on
variety of idiosyncratic and stochastic factors – the majority
of which are initially unknown or not directly measurable
by the utility. The utility must, therefore, endeavor to learn
the behavior of customers over time through observation of
aggregate demand reductions in response to its offered prices
for DR. At the same time, the utility must set its prices for DR
in such a manner as to promote increased earnings over time.
As we will later establish, such tasks are inextricably linked,

Supported in part by NSF grants ECCS-1351621, CNS-1239178, IIP-
1632124, US DoE under the CERTS initiative, and the Atkinson Center for
a Sustainable Future.

Kia Khezeli and Eilyan Bitar are with the School of Electrical and Computer
Engineering, Cornell University, Ithaca, NY, 14853, USA. Emails: {kk839,
eyb5}@cornell.edu

and give rise to a trade-off between learning (exploration) and
earning (exploitation) in pricing demand response over time.

Contribution and Related Work: We consider the setting in
which the electric power utility is faced with a demand curve
that is affine in price, and subject to unobservable, additive
random shocks. Assuming that both the parameters of the
demand curve and the distribution of the random shocks are
initially unknown to the utility, we investigate the extent to
which the utility might dynamically adjust its offered prices for
demand curtailment to maximize its cumulative risk-sensitive
payoff over a finite number of T days. We define the utility’s
payoff on any given day as the largest return the utility is
guaranteed to receive with probability no less than 1−α. Here,
α ∈ (0, 1) encodes the utility’s sensitivity to risk. In this paper,
we propose a causal pricing policy, which resolves the trade-
off between the utility’s need to learn the underlying demand
model and maximize its cumulative risk-sensitive payoff over
time. More specifically, the proposed pricing policy is shown
to exhibit an expected payoff loss over T days – relative to
an oracle that knows the underlying demand model – which
is at most O(

√
T ). Moreover, the proposed pricing policy is

shown to yield a sequence of offered prices, which converges
to the sequence of oracle optimal prices in the mean square
sense.

There is a related stream of literature in operations research
[1]–[4], which considers a similar setting in which a monop-
olist endeavors to sell a product over multiple time periods –
with the aim of maximizing its cumulative expected revenue
– when the underlying demand curve (for that product) is
unknown and subject to exogenous shocks. What distinguishes
our formulation from this prevailing literature is the explicit
treatment of risk-sensitivity in the optimization criterion we
consider, and the subsequent need to design pricing policies
that not only learn the underlying demand curve, but also learn
the shock distribution.

Focusing explicitly on demand response applications, there
are several related papers in the literature, which formulate
the problem of eliciting demand response under uncertainty
within the framework of multi-armed bandits [5]–[8]. In this
setting, each arm represents a customer or a class of customers.
Taylor and Mathieu [5] show that, in the absence of exogenous
shocks on load curtailment, the optimal policy is indexable.
Kalathil and Rajagopal [6] consider a similar multi-armed
bandit setting in which a customer’s load curtailment is subject
to an exogenous shock, and attenuation due to fatigue resulting
from repeated requests for reduction in demand over time.
They propose a policy, which ensures that the T -period regret
is bounded from above by O(

√
T log T ). There is a related

stream of literature, which treats the problem of pricing de-
mand response under uncertainty using techniques from online
learning [9]–[12]. Perhaps closest to the setting considered
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in this paper, Jia et al. [10] consider the problem of pricing
demand response when the underlying demand function is
unknown, affine, and subject to normally distributed random
shocks. With the aim of maximizing the utility’s expected
surplus, they propose a stochastic approximation-based pricing
policy, and establish an upper bound on the T -period regret
that is O(log T ). There is another stream of literature, which
considers an auction-based approach to the procurement of
demand response [13]–[19]. In such settings the primary
instrument for analysis is game-theoretic in nature.

Organization: The rest of the paper is organized as follows.
In Section II, we develop the demand model and formulate the
utility’s pricing problem for demand response. In Section III,
we outline a scheme for demand model learning. In Section
IV, we propose a pricing policy and analyze its performance
according to the T -period regret. Finally, Section VI concludes
the paper. All mathematical proofs are omitted due to space
constraints. They can be found in [20].

II. MODEL

A. Responsive Demand Model

We consider a class of demand response (DR) programs in
which an electric power utility seeks to elicit a reduction in
peak electricity demand from a fixed group of N customers
over multiple time periods (e.g., days) indexed by t = 1, 2, . . . .
The class of DR programs we consider rely on uniform price-
based incentives for demand reduction. Specifically, prior to
each time period t, the utility broadcasts a single price pt ≥ 0
($/kWh), to which each participating customer i responds with
a reduction in demand Dit (kWh) – thus entitling customer i
to receive a payment in the amount of ptDit.1 We model the
response of each customer i to the posted price pt at time t
according to a linear demand function given by

Dit = aipt + bi + εit, for i = 1, . . . , N

where ai ∈ R and bi ∈ R are model parameters unknown to
the utility, and εit is an unobservable demand shock, which we
model as a random variable. Its distribution is also unknown
to the utility. We define the aggregate response of customers
at time t as Dt :=

∑N
i=1Dit, which satisfies

Dt = apt + b+ εt, (1)

where the aggregate model parameters and shock are defined
as a :=

∑N
i=1 ai, b :=

∑N
i=1 bi, and εt =

∑N
i=1 εit. To

simplify notation in the sequel, we write the deterministic
component of aggregate demand as λ(p, θ) := ap + b, where
θ := (a, b) denotes the aggregate demand parameters.

We assume throughout the paper that a ∈ [a, a] and
b ∈

[
0, b
]
, where the model parameter bounds are assumed

to be known and satisfy 0 < a ≤ a < ∞ and 0 ≤ b.
Such assumptions are natural, as they ensure that the price
elasticity of aggregate demand is strictly positive and bounded,
and that reductions in aggregate demand are guaranteed to
be nonnegative in the absence of demand shocks. We also

1A customer’s reduction in demand is measured relative to a predetermined
baseline. The question as to how such a baseline is calculated is beyond the
scope of this paper, and is left as a direction for future research.

assume that the sequence of shocks {εt} are independent and
identically distributed random variables, in addition to the
following technical assumption.

Assumption 1. The aggregate demand shock εt has a bounded
range [ε, ε], and a cumulative distribution function F , which
is bi-Lipschitz over this range. Namely, there exists a real
constant L ≥ 1, such that for all x, y ∈ [ε, ε], it holds that

1

L
|x− y| ≤ |F (x)− F (y)| ≤ L |x− y| .

There is a large family of distributions respecting As-
sumption 1 including uniform and doubly truncated normal
distributions. Moreover, the assumption that the aggregate
demand shock takes bounded values is natural, given the
inherent physical limitation on the range of values that demand
can take. And, technically speaking, the requirement that F
be bi-Lipschitz is stated to ensure Lipschitz continuity of its
inverse, which will prove critical to the derivation of our main
results. Finally, we note that the utility need not know the
parameters specified in Assumption 1.

B. Utility Model and Pricing Policies

We consider a setting in which the utility seeks to reduce
its peak electricity demand over multiple days, indexed by t.
Accordingly, we let ct ($/kWh) denote the wholesale price
of electricity during peak demand hours on day t. And, we
assume that ct is known to the utility prior to its determination
of the DR price pt in each period t. Upon broadcasting a price
pt to its customer base, and realizing an aggregate demand
reduction Dt, the utility derives a net reduction in its peak
electricity cost in the amount of (ct − pt)Dt. Henceforth, we
will refer to the net savings (ct−pt)Dt as the revenue derived
by the utility in period t.

The utility is assumed to be sensitive to risk, in that it would
like to set the price for DR in each period t to maximize the
revenue it is guaranteed to receive with probability no less
than 1 − α. Clearly, the parameter α ∈ (0, 1) encodes the
degree to which the utility is sensitive to risk. Accordingly,
we define the risk-sensitive revenue derived by the utility in
period t given a posted price pt as

rα(pt) = sup {x ∈ R : P{(ct − pt)Dt ≥ x} ≥ 1− α} . (2)

The risk measure specified in (2) is closely related to the stan-
dard concept of value at risk commonly used in mathematical
finance. Conditioned on a fixed price pt, one can reformulate
the expression in (2) as

rα(pt) = (ct − pt)(λ(pt, θ) + F−1(α)), (3)

where F−1(α) := inf{x ∈ R : F (x) ≥ α} denotes the α-
quantile of the random variable εt. It is immediate to see from
the simplified expression in (3) that rα(pt) is strictly concave
in pt. Let p∗t denote the optimal price, which maximizes the
risk-sensitive revenue in period t. Namely,

p∗t := arg max{rα(pt) : pt ∈ [0, ct]}.
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Its explicit solution is readily derived from the corresponding
first order optimality condition, and is given by

p∗t =
ct
2
− b+ F−1(α)

2a
.

We define the oracle risk-sensitive revenue accumulated over
T time periods as

R∗(T ) :=
T∑
t=1

rα(p∗t ).

The term oracle is used, as R∗(T ) equals the maximum risk-
sensitive revenue achievable by the utility over T periods if it
were to have perfect knowledge of the demand model.

In the setting considered in this paper, we assume that
both the demand model parameters θ = (a, b) and the shock
distribution F are unknown to the utility at the outset. As
a result, the utility must attempt to learn them over time
by observing aggregate demand reductions in response to
offered prices. Namely, the utility must endeavor to learn the
demand model, while simultaneously trying to maximize its
risk-sensitive returns over time. As we will later see, such
task will naturally give rise to a trade-off between learning
(exploration) and earning (exploitation) in pricing demand
response over time. First, we describe the space of feasible
pricing policies.

We assume that, prior to its determination of the DR price
in period t, the utility has access to the entire history of prices
and demand reductions until period t−1. We, therefore, define
a feasible pricing policy as an infinite sequence of functions
π = (p1, p2, . . . ), where each function in the sequence is
allowed to depend only on the past history. More precisely, we
require that the function pt be measurable according to the σ-
algebra generated by the history of past decisions and demand
observations (p1, . . . , pt−1, D1, . . . , Dt−1) for all t ≥ 2, and
that p1 be a constant function. The expected risk-sensitive
revenue generated by a feasible pricing policy π over T time
periods is defined as

Rπ(T ) := Eπ
[
T∑
t=1

rα(pt)

]
,

where expectation is taken with respect to the demand model
(1) under the pricing policy π.

C. Performance Metric

We evaluate the performance of a feasible pricing policy π
according to the T -period regret, which we define as

∆π(T ) := R∗(T )−Rπ(T ).

Naturally, pricing policies yielding a smaller regret are pre-
ferred, as the oracle risk-sensitive revenue R∗(T ) stands as
an upper bound on the expected risk-sensitive revenue Rπ(T )
achievable by any feasible pricing policy π. Ultimately, we
seek a pricing policy whose T -period regret is sublinear in
the horizon T . Such a pricing policy is said to have no-regret.

Definition 1 (No-Regret Pricing). A feasible pricing policy π
is said to exhibit no-regret if limT→∞∆π(T )/T = 0.

III. DEMAND MODEL LEARNING

Clearly, the ability to price with no-regret will rely centrally
on the rate at which the unknown parameters, θ, and quantile
function, F−1(α), can be learned from the market data. In
what follows, we describe a basic approach to model learning
built on the method of least squares estimation.

A. Parameter Estimation
Given the history of past decisions and demand observations

(p1, . . . , pt, D1, . . . , Dt) through period t, define the least
squares estimator (LSE) of θ as

θt := arg min

{
t∑

k=1

(Dk − λ(pk, ϑ))2 : ϑ ∈ R2

}
,

for time periods t = 1, 2, . . . . The LSE at period t admits an
explicit expression of the form

θt =

(
t∑

k=1

[
pk
1

] [
pk
1

]>)−1( t∑
k=1

[
pk
1

]
Dk

)
, (4)

provided the indicated inverse exists. It will be convenient to
define the 2× 2 matrix

Jt :=
t∑

k=1

[
pk
1

] [
pk
1

]>
=

[∑t
k=1 p

2
k

∑t
k=1 pk∑t

k=1 pk t

]
.

Utilizing the definition of the aggregate demand model (1),
in combination with the expression in (4), one can obtain the
following expression for the parameter estimation error:

θt − θ = J −1
t

(
t∑

k=1

[
pk
1

]
εk

)
. (5)

Remark 1 (The Role of Price Dispersion). The expression for
the parameter estimation error in (5) reveals how consistency
of the LSE is reliant upon the asymptotic spectrum of the
matrix Jt. Namely, the minimum eigenvalue of Jt, must
grow unbounded with time, in order that the parameter esti-
mation error converge to zero in probability. In [3, Lemma 2],
the authors establish a sufficient condition for such growth.
Specifically, they prove that the minimum eigenvalue of Jt

is bounded from below (up to a multiplicative constant) by the
sum of squared price deviations defined as Jt :=

∑t
k=1(pk −

pt)
2, where pt := (1/t)

∑t
k=1 pk. The result is reliant on

the assumption that the underlying pricing policy π yield a
bounded sequence of prices {pt}. An important consequence
of such a result is that it reveals the explicit role that price
dispersion (i.e., exploration) plays in facilitating consistent
parameter estimation.

Finally, given the underlying assumption that the unknown
model parameters θ belong to a compact set defined Θ :=
[a, a] × [0, b], one can improve upon the LSE at time t
by projecting it onto the set Θ. Accordingly, we define the
truncated least squares estimator as

θ̂t := arg min {‖ϑ− θt‖2 : ϑ ∈ Θ} (6)

Clearly, we have that ‖θ̂t− θ‖2 ≤ ‖θt− θ‖2. In the following
section, we describe an approach to estimating the underlying
quantile function using the parameter estimator defined in (6).
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B. Quantile Estimation

Building on the parameter estimator specified in Equa-
tion (6), we construct an estimator of the unknown quantile
function F−1(α) according to the empirical quantile function
associated with the demand estimation residuals. Namely, in
each period t, define the sequence of residuals associated with
the estimator θ̂t as

ε̂k,t := Dk − λ(pk, θ̂t),

for k = 1, . . . , t. Define their empirical distribution as

F̂t(x) :=
1

t

t∑
k=1

1{ε̂k,t ≤ x},

and their corresponding empirical quantile function as
F̂−1t (α) = inf{x ∈ R : F̂t(x) ≥ α} for all α ∈ (0, 1).
It will be useful in the sequel to express the empirical
quantile function in terms of the order statistics associated
with sequence of residuals. Essentially, the order statistics
ε̂(1),t, . . . , ε̂(t),t are defined as a permutation of ε̂1,t, . . . , ε̂t,t
such that ε̂(1),t ≤ ε̂(2),t ≤ · · · ≤ ε̂(t),t. With this concept
in hand, the empirical quantile function can be equivalently
expressed as

F̂−1t (α) = ε̂(i),t (7)

where the index i is chosen such that i−1
t < α ≤ i

t . It is not
hard to see that i = dtαe. Using Equation (7), one can relate
the quantile estimation error to the parameter estimation error
according to the following inequality

|F̂−1t (α)− F−1(α)|
≤ |F−1t (α)− F−1(α)|+

(
1 + |p(i)|

)
‖θ̂t − θ‖1, (8)

where F−1t is defined as the empirical quantile function associ-
ated with the sequence of demand shocks ε1, . . . , εt. Their em-
pirical distribution is defined as Ft(x) := 1

t

∑t
k=1 1{εk ≤ x}.

The inequality in (8) reveals that consistency of the quantile
estimator (7) is reliant upon consistency of the both the pa-
rameter estimator and the empirical quantile function defined
in terms of the sequence of demand shocks. Consistency of the
former is established in Lemma 1 under a suitable choice of a
pricing policy, which is specified in Equation (11). Consistency
of the latter is clearly independent of the choice of pricing
policy. In what follows, we present a bound on the rate of its
convergence in probability.

Proposition 1. There exists a finite positive constant µ1 such
that

P{|F−1t (α)− F−1(α)| > γ} ≤ 2 exp(−µ1γ
2t) (9)

for all γ > 0 and t ≥ 2.

Proposition 1 is similar in nature to [21, Lemma 2], which
provides a bound on the rate at which the empirical distribution
function converges to the true cumulative distribution function
in probability. The combination of Assumption 1 with [21,
Lemma 2] enables the derivation of the bound in (9).

IV. A NO-REGRET PRICING POLICY

Building on the approach to demand model learning in
Section III, we construct a DR pricing policy, which is
guaranteed to exhibit no-regret.

A. Policy Design

We begin with a description of a natural approach to pricing,
which interleaves the model estimation scheme defined in
Section III with a myopic approach to pricing. That is to say,
at each stage t + 1, the utility estimates the demand model
parameters and quantile function according to (6) and (7),
respectively, and sets the price according to

p̂t+1 =
ct+1

2
− b̂t + F̂−1t (α)

2ât
. (10)

Under such pricing policy, the utility essentially treats its
model estimate in each period as if it were correct, and
disregards the subsequent impact of its choice of price on
its ability to accurately estimate the demand model in future
time periods. A danger inherent to a myopic approach such
as this is that the resulting price sequence may fail to elicit
information from demand at a rate, which is fast enough to
enable consistent model estimation. As a result, the model
estimates may converge to incorrect values. Such behavior is
well documented in the literature [2]–[4], and is commonly
referred to as incomplete learning.

In order to prevent the possibility of incomplete learning
in the setting considered in this paper, we propose a pricing
policy, which is guaranteed to elicit information from demand
at a sufficient rate through perturbations to myopic price (10).
The pricing policy we propose is defined as

pt+1 =

{
p̂t+1, t odd
p̂t + 1

2 (ct+1 − ct) + δt+1, t even,
(11)

where δt := sgn (ct − ct−1) · t−1/4. We refer to (11) as the
perturbed myopic policy. In defining the sign function, we
require that sgn(0) = 1. Roughly speaking, the sequence of
myopic price offsets are chosen to decay at a rate, which is
slow enough to ensure consistent model learning, but not so
slow as to preclude a sublinear growth rate for regret.

The perturbed myopic policy (11) differs from the myopic
policy (10) in two ways. First, the model parameter estimate,
θ̂t, and quantile estimate, F̂−1t (α), are updated at every other
time step. Second, to enforce sufficient price exploration, an
offset is added to the myopic price at every other time step. In
Section IV-B, we will show that the combination of these two
features is enough to ensure consistent parameter estimation
and a sublinear growth rate for the T -period regret, which is
bounded from above by O(

√
T ).

B. A Bound on Regret

Given the demand model considered in this paper, the T -
period regret can be expressed as

∆π(T ) = a
T∑
t=1

Eπ
[
(pt − p∗t )2

]
(12)
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underanypricingpolicyπ.Itbecomesapparent,uponexam-
inationofEquation(12),thattherateatwhichregretgrows
isdirectlyproportionaltotherateatwhichpricingerrors
accumulate. We,therefore,proceedinderivingaboundon
therateatwhichtheabsolutepricingerror|pt−p

∗
t|converges

tozeroinprobability,undertheperturbedmyopicpolicy.
First,itisnotdifficulttoshowthat,undertheperturbed

myopicpolicy(11),theabsolutepricingerrorincurredineach
periodtisupperboundedby

|pt+1−p
∗
t+1| (13)

≤κ1θt−θ1 + κ2|F
−1
t (α)−F

−1(α)|+ |δt+1|

where κ1 := max{12a,
b+|F 1(α)|

2aa }andκ2 :=
1
2a.The

upperboundin(13)isintuitiveasitconsistsofthreeterms:
theparameterestimationerror,thequantileestimationerror,
andthemyopicpriceoffset–eachofwhichrepresentsa
rudimentarysourceofpricingerror.
Onecanfurtherrefinetheupperboundin(13),bylever-

agingonthefactthat,undertheperturbedmyopicpolicy,the
generatedpricesequenceisuniformlybounded.Thatistosay,
|pt|≤pforalltimeperiodst,where

p:=
1

2
max c−

ε

a
,c−

ε

a
,
b+ε

a
.

Combiningthisfactwiththepreviouslyderivedupperbound
onthequantileestimationerrorin(8),wehavethat

|pt+1−p
∗
t+1| (14)

≤κ3θt−θ1 + κ2|F
−1
t (α)−F

−1(α)|+ |δt+1|

whereκ3:=κ1+κ2(1+p).
Consistencyoftheperturbedmyopicpolicydependsonthe

asymptoticbehaviorofeachtermin(14).Amongthem,only
theparameterestimationerrordependsonthechoiceofpricing
policy.Thepriceoffsetconvergestozerobyconstruction,and
consistencyoftheempiricalquantilefunctionisestablishedin
Proposition1.ThefollowingLemmaestablishesaboundon
therateatwhichtheparameterestimatesconvergestothetrue
modelparametersinprobability.

Lemma1(ConsistentParameterEstimation).Thereexistfi-
nitepositiveconstantsµ2andµ3suchthat,undertheperturbed
myopicpolicy(11),

P{θt−θ1>γ}≤2exp(−µ2γ
2(
√
t−1))+2exp(−µ3γ

2t)

forallγ>0andt≥2.

ThefollowingTheoremprovidesanupperboundonthe
T-periodregret.

Theorem1(SublinearRegret).Thereexistfinitepositive
constantsC0,C1,C2,andC3suchthat,undertheperturbed
myopicpolicy(11),theT-periodregretisboundedby

∆π(T)≤C0+C1
√
T+C2

4
√
T+C3log(T)

forallT≥2.

InprovingTheorem1,wealsoshowthattheperturbed
myopicpolicy(11)yieldsasequenceofmarketpricespt,

whichconvergestotheoptimalpricesequencep∗t inthe
meansquaresense.Itisalsoworthnotingthatthesetting
consideredinthispaperincludesasaspecialcasethesingle
productsettingconsideredin[3].Theorderoftheupper
boundonregretderivedinthispaper,O(

√
T),isaslight

improvementontheorderoftheboundderivedin[3,Theorem
2],O(

√
TlogT),asiteliminatesthemultiplicativefactorof

log(T).

V.CASESTUDY

Inthissection,wecomparetheperformanceofthemyopic
policy(10)againsttheperturbedmyopicpolicy(11)witha
numericalexample.Weconsiderthesettinginwhichthereare
N =1000customersparticipatingintheDRprogram.For
eachcustomeri,weselectaiuniformlyatrandomfromthe
interval[0.04,0.20],2andindependentlyselectbiaccordingan
exponentialdistribution(withmeanequalto0.01)truncated
overinterval[0,0.1].Parametersaredrawnindependently
acrosscustomers.Foreachcustomeri,wetakethethedemand
shocktobedistributedaccordingtoanormaldistributionwith
zero-meanandstandarddeviationequalto0.04,truncated
overtheinterval[−0.4,0.4]. Weconsiderautilitywithrisk
sensitivityequaltoα=0.1.Inotherwords,theutilityseeks
to maximizetherevenueitisguaranteedtoreceivewith
probability0.9orgreater.Finally,wetakethewholesaleprice
ofelectricitytobefixedatct=1.5$/kWhforalltimest.

A.Discussion

Becausethewholesalepriceofelectricityisfixedover
time,theparameterandquantileestimatesrepresenttheonly
sourceofvariationinthesequenceofpricesgeneratedbythe
myopicpolicy.Duetothecombinedstructureofthemyopic
policyandtheleastsquaresestimator,thevalueofeachnew
demandobservationrapidlydiminishesovertime,which,in
turn,manifestsinarapidconvergenceofthemyopicprice
process.Theresultinglackexplorationinthesequenceof
myopicpricesresultsinincompletelearning,whichisseen
inFigure1.Namely,thesequenceofmyopicpricesconverges
toavalue,whichdiffersformtheoracleoptimalprice.Asa
consequence,themyopicpolicyincursaT-periodregretthat
growslinearlywithtime,asisobservedinFigure2.
Ontheotherhand,thepriceoffsetδtgeneratesenough
variationinsequenceofpricesgeneratedbytheperturbed
myopicpolicytoensureconsistentmodelestimation.This,in
turn,resultsinconvergenceofthesequenceofpostedpricesto
theoracleoptimalprice.This,combinedwiththefactthatthe
priceoffsetδtvanishesasymptotically,ensuressublinearityof
theresultingT-periodregret,asisobservedinFigure2.

VI.CONCLUSION

Inthispaper,weproposeadata-drivenapproachtopricing
demandresponsewiththeaimofmaximizingtherisksensitive
revenuederivedbytheutility.Thepricingpolicywepropose

2Thisrangeofparametervaluesisconsistentwiththerangeofdemand
priceelasticitiesobservedinseveralreal-timepricingprogramsoperatedin
theUnitedStates[22],[23].
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Fig. 1. A sequence of prices ($/kWh) generated by the perturbed myopic
policy ( ), the myopic policy ( ), and the oracle policy ( ).
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Fig. 2. Regret of the perturbed myopic policy ( ) and the myopic policy
( ).

has two key features. First, the unknown demand model
parameters are estimated using a least squares estimator. Sec-
ond, the proposed policy incorporates an explicit price offset
to ensure sufficient exploration in the sequence of prices it
generates. We show that these two features together guarantee
complete learning. Moreover, we show that the order of regret
associated with the proposed policy is no worse than O(

√
T ).
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